HOJA TÉCNICA PETG (TDS)

El tereftalato de polietileno modificado con glicol (PETG) es un material resistente y duradero y es fácil de usar. Su resistencia permite que sea un material adecuado para el envasado de alimentos, la característica química no reactiva le permite ser el material más valioso en el campo médico, normalmente utilizado para dispositivos ortopédicos y protésicos.

El filamento PETG de alto rendimiento se basa en la tecnología FFF/FDM, con un diámetro de uso común de 1,75 mm, temperatura de extrusor de 210-235 °C, de plataforma de impresión de 50-80 °C, con una excelente adhesión entre capas que mejora en gran medida la fuerza y la resistencia a los golpes del prototipo.

El PETG es un material muy impermeable que lo convierte en una excelente opción para la actividad al aire libre. También tiene una excelente resistencia química, que puede ser bien utilizada tanto en ambientes ácidos como alcalinos, PETG también tiene una fuerte resistencia al impacto, lo que lo convierte en el material sustituto de PMMA y PC.

Propiedades físicas	Condición	Método de prueba	Valor típico
Densidad		ASTM D792	1.29 g/ <i>cm</i> ³
Densidad a Granel			0.73 g/cm ³
Viscosidad intrínseca		ISO 1628-5	0.80 dl/g
Absorción de agua		ASTM D570	0.12%
Color	b*	ASTM D6290	≤ 1
	L*	ASTM D6290	≥64

Propiedades mecánicas	Condición	Método	Valor típico
		de prueba	
Módulo de tracción		ISO 527-2	3000 MPa
Estrés de fluencia por tracción		ISO 527-2	53 MPa
Elongación en el rendimiento		ISO 527-2	4%
Resistencia a la tracción		ISO 527-2	53 MPa
Elongación en el estrés		ISO 527-2	4%
Estrés en el descanso		ISO 527-2	19 MPa
Elongación nominal a la rotura		ISO 527-2	31%
Módulo de flexión		ISO 178	2040 MPa
Estrés de flexión		ISO 178	171 MPa
Deflexión a la fuerza de flexión		ISO 178	8.6 mm

Impacto	Condición	Método	Valor típico
		de prueba	
Resistencia al impacto "Izod" con muescas	23°C, 50 % RH	ISO 180	4.5kJ/ <i>m</i> ²
Fuerza de impacto "Izod" sin muescas	23°C, 50 % RH	ISO 180	Sin descanso

Dureza	Condición	Método de prueba	Valor típico
Dureza de la orilla		ASTM D2240	70

Propiedades térmicas	Condición	Método de prueba	Valor típico
Temperatura de deflexión térmica			
	0, 45 MPa	ISO 75-2	68°C
	1.8 MPa	ISO 75-2	62°C
Temperatura de ablandamiento "Vicat"		ISO 306	78°C
Temperatura de transición del vidrio		ASTM D3418	80°C

Recomendaciones de impresión		
Temperatura del extrusor	210 -235 °C	
Temperatura de la plataforma de impresión	50 -80 °C	
Velocidad de impresión	30-70 mm/s	
Temperatura del ambiente de impresión	50-70 °C	
Ventiladores	0-100%	